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Abstract

According to the research and study, cervical cancer has risen to develop the fourth most communal malignancy to strike
women. Five different forms of gynaecologic cancer affect the feminine generative organism. The cervix, the lower por-
tion of the body that joins the vagina and the uterus, is where cervical cancer develops in a woman. Cancers, in general,
are abnormal alterations in cell development that take place within the human body. Additionally, aberrant cell alterations
in the uterine lining or at the womb's opening have been linked to cervical cancer. Additionally, the Artificial Bee Colony
(ABC) approach's enhancement of the topography selection process is taken into consideration. This work suggests a novel
approach for better identifying the risk factors for cervical cancer in females by combining an evolutionary technique for
topography selection with a deep learning model. The lack of specificity regarding the timeframe or demographic affected
might limit the study's applicability and generalizability. To create an improvised topography selection, a deep learning
method known as LSTM is paired with an evolutionary computation method known as ABC. The model's accuracy is found
to be 98.68% when compared to previously used models like SVM-PCA and SVM-BC. Comparing the implemented model

to other models, it provided the highest level of accuracy.
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Introduction

According to figures based on the literature, cervical can-
cer is one of the deadliest tumors, ranking fourth among
prevalent malignancies in women and seventh overall. Each

P< K. Ramu
k.ramul47 @gmail.com

Arun Ananthanarayanan
paatu.84 @gmail.com

P. Joel Josephson
joeljosephsonp@gmail.com

N. R. Rejin Paul
nrrejinpaul @ gmail.com

Praveen Tumuluru
Praveenluru@gmail.com

Ch. Divya
divyachavalil 7@gmail.com

Sanjay Kumar Suman
prof.dr.sanjaykumarsuman @ gmail.com

Published online: 05 July 2024

year, more than 500,000 of these instances are reported
worldwide [1]. Additionally, it can be deduced from many
statistical studies that this cancer is more prevalent in less
developed parts of the world, more so than other types of
cancer that are more widespread [2]. Finding the best subset
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of topographies from the vast pool of potentially obtainable
topographies is the process of topography selection. Filter,
wrapper, and embedding methods are a few of the topogra-
phy selection techniques. Filter-based topography selection
techniques are extremely scalable for huge datasets, com-
putationally quick, and simple to understand [3]. In their
implementation, wrapper- and embedded-based topography
selection techniques make use of certain machine learn-
ing algorithms. The accuracy of the model is improved by
employing swarm-based topography selection approaches
in order to single out the most important risk factors and
topographies from among the numerous risk variables [4].
When there is a large space for topography selection, or
when the solution space is large, bio-inspired algorithms
are better equipped to search for optimal and nearly optimal
solutions [5].

Various health-related companies use certain computing
approaches, such as classification, clustering, etc. through
machine and deep learning algorithms to improve medical
diagnosis. Due to a shortage of medical equipment, it is
impossible for people in developing nations and those who
are economically underprivileged to use a medical diagnos-
tic system [7]. This is the driving force behind computer-
aided screening methods, which aid in the early diagnosis of
the illness and lengthen the life expectancy of women. Val-
ues must be subjected to multivariate analysis for cervical
cancer screening [8]. The available dataset's solution space
is largely constrained, making it unlikely to produce accu-
rate results. Methods for identifying approaches to generate
samples for applying screening procedures and generating
greater convergence to solutions present challenges [9].

Contribution of the Work

e Cervical cancer ranks as the fourth most common
malignancy affecting women, underscoring the need for
improved detection methods.

Fig. 1 General machine learn-
ing based cervical cancer
analysis
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e The study proposes a novel approach, combining evolu-
tionary topography selection with deep learning (LSTM)
and Artificial Bee Colony (ABC) optimization.

e Results indicate a significant accuracy boost to 98.68%,
outperforming conventional models like SVM-PCA and
SVM-BC, thus advancing cervical cancer risk factor
identification.

The ABC algorithm is a bio-inspired topography selec-
tion method that lowers the classifier miss rate. Any numeri-
cal issue can be optimized using the ABC algorithm, a pop-
ulation-based stochastic optimization technique [11]. The
ABC algorithm's usage of the honey bees' food-foraging
activities as a topography selection strategy is described in
the proposed study. Solutions are used in this manner to
refer to the honey bees' food source. To effectively utilize
food supplies, the bees can be dispersed over a range of
distances [12]. This ABC technique requires three key ele-
ments in order to have a minimal model for choosing the
foragers: food supplies, hired foragers, and jobless forag-
ers [13]. Recruitment of a rich food source, which produces
positive feedback, and abandonment of a food source, which
produces negative feedback, are the two primary actions that
are associated with the self-organizing of bees [15] (Fig. 1).

In this study, the dataset's contributing attributes to the
causes of cervical cancer are chosen using the ABC method.
These types of bees—the spectator bee, the employed bee,
and the scout bee are considered by this algorithm [16].
Every colony contains an equal number of workers and
observers. Every bee in the workforce travels to the food
sources and returns to the hive to alert the spectator bee by
dancing in the dance area. By watching the dancing steps of
a working bee, the spectator bee chooses the food source.
An employed bee becomes a scout bee and begins searching
for a new food source when it abandons its current one [18].

It is used to analyse the risk factors in the classification
of cervical cancer. LSTM is an expanded version of RNN.
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Short-term memory is not a problem with this strategy. An
input gate, an output gate, and a forget gate are among its
three gates [20]. Each layer of the two-hidden-layer neural
network has 100 nodes. These cell units get the activation
signals from a variety of sources. The designed multipli-
ers regulate how the cell is activated [21]. The rest of the
networks' memory cell contents cannot be changed continu-
ously thanks to an LSTM gate. The topographies chosen
from the ABC module are supplied to the LSTM as input in
this work [23].

The ABC algorithm is used in this study to choose char-
acteristics optimally, increasing the classifier's accuracy
while doing so. The outcome demonstrates that the sug-
gested system selects optimal topographies using the ABC
methodology and achieves higher accuracy. It is assumed
that the classifier's accuracy is negligible in the absence of
a topography selection strategy. The results of the experi-
mental study unequivocally demonstrate the value of the
topography selection strategy in categorization [24-26].

The objective is to construct an intelligence-driven model
by integrating Support Vector Machine, Genetic Algorithm,
Backpropagation Network techniques, and a filter-based
topography selection strategy. This aims to enhance accu-
racy and efficiency in complex data analysis, particularly in
pattern recognition and classification tasks.

The subsequent section provides an outline for the
remaining content of the paper. In part 2 of the document,
you will find a brief description of the related work. This
section provides an overview of the existing research and
studies that are relevant to the topic at hand. Moving on
to "The Objective of the Work", you will find a detailed
explanation of the methodology employed in this study, as
well as the theoretical foundations that underpin the methods
used. This section aims to provide a clear understanding of
the approach taken and the principles guiding the research
process. In "The Proposed Work", we will discuss the simu-
lation results and analysis. In the concluding section of this
research paper, titled "key findings," we aim to provide a
concise summary of the most significant outcomes.

Previously Done Work

Diagnostic and prognostic strategies for cervical cancer,
including those based on Pap smear imaging, clinical anal-
ysis, gene expression analysis, and other relevant screen-
ing methods, have been the focus of numerous researchers.
Screening approaches for cervical cancer detection and
prognosis are discussed in full here. In this section, we also
discuss the study's findings and drawbacks in light of the
approaches used to investigate the topic (Table 1).

The research gap lies in the absence of comprehensive
exploration into the combined application of deep learning

classification and topography selection techniques in aug-
menting cervical cancer analysis. While the study demon-
strates promising results in terms of accuracy, there remains
a need for further investigation into the scalability, robust-
ness, and real-world applicability of these methods across
diverse patient populations and clinical settings.

The Objective of the Work

e Develop a comprehensive model integrating Support
Vector Machine, Genetic Algorithm, and Backpropaga-
tion Network methodologies.

e Incorporate a filter-based topography selection strategy
to enhance model accuracy and efficiency.

e Aim for an intelligence-based approach to effectively
analyze and interpret complex data, particularly in the
context of pattern recognition and classification tasks.

The Proposed Work

The suggested study employs a deep learning technology
called long short-term memory with ABC (LSTM-ABC) to
aid in the identification of cervical cancer.

The cervical cancer screening model was trained and
tested on a dataset comprising colposcopy images sourced
from Intel and Smartphone ODT's public cervical screen-
ing dataset. It includes various cervix types, with experts
classifying raw images based on visible transition zones,
encompassing three types of cervical pre-cancerous trans-
formation zones.

Figure 2 depicts the process diagram for this study. In
order to lower the classifier miss rate, the suggested work
uses a bio-inspired technique dubbed the ABC algorithm
for topography selection. The honey bees' foraging behav-
iour in the ABC algorithm is used as a topography selection
approach in the suggested work. In this strategy, answers are
referred to as potential honey bee food sources. Bees can be
dispersed over large areas, allowing them to make more effi-
cient use of available food. This ABC technique comprises
three important components—food sources, employed for-
agers, and unemployed foragers—in order to create a mini-
mum model to pick the foragers. Recruitment to the rich
food source results in positive feedback, while abandonment
of a food source results in negative feedback; both of these
behaviours are related to the self-organization of bees.

The proposed study uses an ABC algorithm to identify
and prioritise data points that contribute to understanding
the root causes of cervical cancer. This algorithm takes into
account three different types of bees—the observer bee, the
worker bee, and the scout bee—in order to function properly.
There are always as many worker bees as there are observers

SN Computer Science
A SPRINGER NATURE journal



(2024) 5:703

SN Computer Science

Page 4 of 10

703

jasejep o3euwr [[ews oy} 03 parjdde Auo 1 1049

-M0Y ‘%86 JO AoBINDOR UOTIBOYISSL]D [JAJ[-[[20 Ul 9SBAIOUI UB PAJBNSUOWIP APN)S STY T,
SOT)SLIJORIRYD MOJ
Surmjesy ejep [eUOISUSWIP-MO] YIIM PI[[IIX2 I ‘AorINOJR %G 1§ Adso(q "syndur xord
-woo Jurppuey ur uondoorod refemnu prepue)s paurrojradino jeopowr pasodoid oy,

'seInqgLIe uea[oog [ Yim yoea ‘sjuened 17z JO JOSEIEp B PAINGLIUOd Uonmnsur [HND

wise[dojAo Surpnjout

woij sygouaq suonorpaid reows ded Sunewoiny ‘siojowered [eUOISUSWIP SNOLIBA

pasn ‘wsedoj£o Jurpn[oxa ‘uonez110391ed [[99 [BOIAIR)) “(AORINJOR %4 16) UONED
-1JISSeo Jo11adns paAdIyor Y S[IYM ‘Sowoono [ejuswradxe paredwod sokeq aareN

Koeanooe

UuoneIYISSB[O %0 08 PaadIyoe yoeoidde ¥ ‘SSUIpUy POULIUOD YN} soSewl
reows deq ur saryder3odo) (o) eane3au 10 aanIsod-1eoued are synsar reaws deq

[BIIA 9I9M SUOTIUSAIUI SISOUSRIP [BIIpaw ‘Junod juened pajruwrf

) URAID) "Arewrwuns Ja31e) 13 pue ‘odA[, [[9D ¢ d130[oyjed ‘siown) dAISBAUT ‘9T B)S

a13o1oed papnpour s1030e] Juspuadapuy ‘Te10AId sem WYILIOS[E ()'SD Sy} “IOOUERD [BD

-IAJ9D JUQLINOAI IO SO[QRLIBA YSII SUIAJIIUP] II PAISA) ()G ‘[OPOW YY) PAUTRI) SPIOII
Q11 senqumye 7] Y syudned g9 Jo sp1odal papnjour A1ojisodor owny, € woij ejeq

9% 16 JO anfea 2Ano1paId aAne3ou  aIm ‘9496 sem A1

-oy10ads [opoA “SurSuaqreyd sem anjea aAndIpaId aanIsod pue AJIAT)ISUSS FujRWIISO

‘S9SBO JOOURD [BOIAJAD JOMA) O} dN(] "UOIIBPI[BA-SSOID P[OJOAY 0} pajoalqns pue paulq

-WO0D 9I9M SJISBIEP UOIBPI[EA pue SUIUTel) ‘A0RINOOR [SPOW JBN[BAS O, “SIOYISSR[O
SE PAZI[NN 9I9M UOISSAISAI JauU O1SE[d Uk ‘uoIssaIfar onsiSo| pazirensar [ LIV

S[[99 190U 109)3p A[[eonEWOINE 0) SoSeWI JeaWs
deq wouiy sagew 120 6] PIM INAS Sursn yoeoidde dn-wonoq & pasodoid sioyiny [za] 9

A[Snoaue NS 9INJONNS PUE SIYSIoM JYT0MIOU SOUN) WILIOSTE ONUaD) WYL
-03[e ¢ 2y} pue K109y} J3s Y3nol yIm swyjLio[e oreuad saurquiod fesodod aray, [61] S

s3ur

-puy oy} 03 uonnqrnuod pamoys saryderodoy ¢ ‘seryderSodo) payooras oy Jo INQ

"IOYISSB[O QY) SE }S9I0,] WOopURY pue POyl JOI[oy oY) Sursn pajogfas saryderdodoyg,

0C P sagewr seaws ded uo yiom yoreasar pasodoxd AdyJ, [L1] ¥

sasse[o £ ojur padnoi3

pue so[duwres G/ Uo seINqIIE §¢ YIIM JOSBIEp dY) UO POYIoUW JSAI0] Wopuey pue
wyo3de WAS oy Sunuswerdwr £q se3ewr Jeaws ded uo yoIeasal Jno parLed Ay, [¥1] €

9sBASIp 9y} 10J sYsLI Juelrodwit oy Surkynuapt £q 190ULd [BOIAISD JUSLINDAI
jo1pa1d 03 suryorw FUTUIBI[ SWAIIXD
pue ‘0°GD ‘auIyorA 10109A 11oddng soyorordde Jururesy aa1y) poyuswadwr Aoy, [o1] z

aamo Hvd

pue [apow aY) JO AJANISULS Y} ParoIdwil yorym [opowr Ay Ul pasn sem yoeoidde

19A9] [129 LYVD QUL ‘siuened gz, [ 10y saryderSodoy ¢g yaim paquiosap sem jet)
jasejep ay) uo sodewr Jeawrs ded Jo SISA[eUe 9y} JOJ UOTISSAIZI ONSISO] pasn Ay, [9] I

sSurpury

SI0OM OIeasdy suomner) ‘ou s

SISATRUE Je[NQE) PUB MIIAI QUOP JIOM SUNSIXd Y], | djqel

SN Computer Science

A SPRINGER NATURE journal



SN Computer Science (2024) 5:703

Page50f10 703

Fig.2 The proposed algorithm
flow diagram

Cervical Cancer
Data —

in any one colony. Every worker bee finds its way to the
flowering plants and back to the hive, where it dances for
the benefit of the other bees in attendance. A bystander bee
chooses the food source by watching the dance of a worker
bee. A worker bee becomes a scout bee when it leaves its
food source and begins searching for a new one.

Proposed method algorithm:

Input: Topographies count in the cervical cancer data.

Output: Optimum topographies.

Harvest new designated topographies

Compute the appropriateness function

Relate the avaricious assortment procedure

10. Compute the probability P, for the topography

11. FOR apiece onlooker bee

12. Select a designated topography X, dependent on P,

13.  Yield novel designated topographies

14. Compute the appropriateness function

15. Relate the avaricious assortment procedure

16. If there is an uninhibited resolution for emissary bees
then

17. Substitute it with novel designated topographies

18. Remember the greatest designated topographies
attained so far

19. cycle=cycle+1

20. Until

21. cycle=M.C.N.

1. Reset the topographies count,i=1...SP

2. Reset topography locus

3. Calculate suitability a of specific topographies
4. Established cycle to 1

5. Recurrence

6. FOR every engaged bee

7.

8.

9.

Oversampling consuming

Feature Selection using
Artificial Bee Colony
(ABC)

SMOTE ——

Classification Consuming
LSTM

l

Enactment Investigation

In this study, we employ LSTM, a type of RNN with
additional functionality, to examine the parameters involved
in cervical cancer categorization and their associated risks.

The fusion of deep learning and evolutionary computa-
tion enhances cervical cancer risk factor identification by
leveraging the strengths of each approach. Deep learning
excels in extracting intricate patterns from complex data,
while evolutionary computation optimizes feature selection,
improving model interpretability and performance. This syn-
ergy allows for more accurate and robust identification of
risk factors, leading to enhanced diagnostic capabilities and
better-informed medical decision-making in cervical cancer
management.

This strategy is highly resistant to the issue of short
memory. An input gate, an output gate, and a forget gate
are its three gates. It is essentially a two-layer neural net-
work with 100 nodes in each hidden layer. These cell units
get activation signals from a wide variety of sources. The
designed multipliers regulate the cell's activity. An LSTM
gate blocks constant changes to the information stored in a
network’s memory cells. The input to LSTM in this investi-
gation comes from the topographies chosen using the ABC
module. The number of categories is displayed as a result.
If the memory output passes through the gate, then cervical
cancer has occurred.

Result Analysis and Discussion

The suggested and current methodologies undergo experi-
mental investigation in the Java simulation environment. As
a direct consequence of this, the dataset has certain minor
inaccuracies, which are rectified by the modifications to
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the techniques that have been explained. In this study, the
accuracy, sensitivity, and specificity of the proposed long
short-term memory with ABC (LSTM-ABC) approach are
evaluated and contrasted with those of the existing method.

Accuracy

To better choose characteristics for the classifier, this study
proposes using the ABC algorithm for optimal topogra-
phy selection. The experimental results demonstrate that
the suggested system selects optimal topographies with a
higher degree of accuracy using the ABC methodology. It
is obvious that the classifier's accuracy will suffer greatly if
a topography selection strategy is not used. The topography
selection method is crucial for classification, as demon-
strated by the experimental investigation. Accuracy values
with and without topography selection are listed in Table 2.

When evaluating a model, accuracy is defined as the ratio
of the observed classification parameters to the full set of
parameters used for classification.

Table2 Accuracy Assessment for pre and post topography selection

TN + TP
TP+ TN+ FP+ FN

Accuracy = x 100 €h)

In Fig. 3, we see a comparison of the model's classifica-
tion accuracy before and after applying topography selection
approaches.

Sensitivity

The formula is used to determine a test's sensitivity, which
is its ability to correctly identify persons with the condition
(true positive rate).

TP

Senstivity = TP+—F]\7

x 100 )
Specificity

Specificity measures how well a test can distinguish healthy
individuals from those who are merely suspicious (Table 3).

S. no. Topography Pre-topography selec- Post-topography

count tion accuracy (%) selection accuracy Table 3 Evaluation assessment of the proposed work with existing

(%) work done
1 96.93 98.94 S. no. Atssessment param- SVM-PCA SVM-ABC LSTM-ABC
2 95.64 98.83 o
3 12 96.78 97.58 Accuracy (%) 96.73 96.89 98.68
4 15 96.65 98.89 Sensitivity (%) 92.58 94.28 95.67
5 18 95.14 98.52 Specificity (%) 92.69 93.49 94.28
Fig.3 Accuracy assessment 100
for pre and post topography 99
selecton 27 EEETTTTTRTE
98

Accuracy (%)

97
96
95
94
93
92
5 8 12

15 18
Feature Count

s Pre-topography Selection Accuracy (%)

= POSt-topography Selection Accuracy (%)

--------- Linear (Post-topography Selection Accuracy (%))
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Specificity = TN % 100 3) Table 4 Performance measure for cytology class
IN + FP Parameters  SVM-ABC LSTM-ABC

Figure 4 provides a comparative analysis between the pro- Without With Without With gradi-
posed LSTM with ABC and the current SVM-PCA method, gradient gradient gradient ent boosting
focusing on specificity. To mitigate the class imbalance boosting  boosting  boosting
inherent in cervical cancer datasets, the study employs Syn-  Accuracy 88.57 95.12 89.35 95.62
thetic Minority Over-sampling Technique (SMOTE). Fur- (%)
thermore, it harnesses the capabilities of long short-term  Recall (%)  91.54 98.67 89.88 98.14
memory (LSTM) networks for cervical cancer classification. Specificity ~ 80.24 89.53 86.43 94.28
LSTM's adeptness in capturing long-term dependencies and (%)
retaining previously acquired knowledge enhances its ability Pr(i;;““ 78.72 94.27 91.27 96.37

(g

to predict the proportion of healthy patients reliably.

The suggested LSTM with ABC algorithm exhibits supe-
rior performance across sensitivity, accuracy, and specific-
ity metrics when compared to traditional SVM-PCA and
SVM-ABC approaches. This highlights its potential as an
advanced tool for cervical cancer diagnosis and risk assess-
ment. Notably, the study incorporates feature selection tech-
niques, particularly in classes such as Cytology and Biopsy,
to enhance model efficiency and interpretability. The One-
Versus-All (OVA) technique is applied to both SVM and
LSTM models, enabling multi-class classification.

Moreover, the study evaluates the impact of adaptive gra-
dient boosting on model performance by comparing results
obtained with and without its application. This analysis
sheds light on the efficacy of different optimization strategies
in enhancing the predictive capabilities of the models. Over-
all, the integration of LSTM with ABC, coupled with feature
selection and advanced optimization techniques, presents a
novel and promising approach to cervical cancer classifica-
tion, offering improved diagnostic accuracy and contributing
to the advancement of medical decision-making processes
(Table 4).

From Figs. 5 and 6 the proposed algorithm is compared
with SVM-ABC algorithm with and without gradient boost-
ing for the class Cytology. We can analyse that the proposed
algorithm is outperformed in both the cases with the existing
algorithm. All the parameters are improved in comparison to
the state of the art algorithm. Similarly in the case of biopsy
class the proposed algorithm outperformance is observed.
Using a probability calculation, this method verifies the
selected features that are relevant to cervical cancer predic-
tion. They will then be instructed to begin regular screening
procedures to reduce their risk of developing cervical cancer.

The qualities are employed to populate a correlation
matrix, showcasing variables' correlation coefficients'
magnitudes. This matrix serves as a valuable tool for sum-
marizing the dataset and its inherent patterns effectively.
Utilized in regression models with multiple independent
variables, the correlation coefficient plays a crucial role.
Figure 7 provides a visual representation of the correlation
among the variables within the cervical cancer dataset,

Fig.4 Evaluation assessment of
the proposed work with existing 99
work done

98

Performance

97

9%

95

94

93

92

91 ‘
90 % ‘

B Accuracy (%)
Sensitivity (%)

Specificity (%)

89
SVM-PCA

SVM-ABC LSTM-ABC

Algorithms
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0
Accuracy Recall  Specificity Precision
Parameters

offering insights into their interrelationships and aiding
in the interpretation of data-driven findings.

Figure 7 shows that the strongest association exists
between the characteristic "smokes" and "smokes (years),"
which makes sense given that smoking is an independent
risk factor for cervical cancer. Number of STD diagnoses
is also highly correlated. Because sexually transmitted dis-
eases (STDs) are so prevalent and have been linked to an
increased risk of cervical cancer.

The study revealed cervical cancer's alarming rise,
ranking as the fourth most prevalent malignancy among
women. Additionally, it underscored the impact of aber-
rant cell alterations in the uterine lining and cervix on
cervical cancer development, emphasizing the urgent need

SN Computer Science
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for effective screening and diagnostic strategies to combat
this growing public health concern.

Conclusion and Future Scope

Machine learning approaches can be found in this period
of widespread digitalization and high speed computation,
allowing for the creation of effective techniques and the
acceleration of diagnostic operations. In order to accu-
rately diagnose cervical cancer, the suggested system
employs an algorithm dubbed the long short-term memory
and ABC (LSTM-ABC) method. In order to improve the
classifier's performance, we employ the SMOTE method
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Fig.7 Correlation matrixes
of independent variables from Age
cervical cancer dataset

Smokes iiFdd 0.21 @ |

Smokes (years) {2010 0.22 (.80 0.05; 0.91 1
Hormonal Contraceptives -+ DL R Rl 5 1 1)
UD = 0.26 | +X b R

STDs G FLERELFS SRS L ELEY 0,16 0.13 '0.0750-04 1 0.95

STDs: Number of diagnosis

to fix issues caused by an unbalanced data set and the ABC
algorithm to choose topographies optimally. The topogra-
phies are used in a classification process utilising the long
short-term memory (LSTM) method. The experimental
results demonstrate that the suggested system produces
higher accuracy, sensitivity, and specificity compared to
the state-of-the-art models.

To further enhance classification accuracy, many differ-
ent classification methods, including ensemble classifiers
and convolution neural network (CNN), will be applied in
the future. In the future, this study's focus will expand to
include predicting cancer stage and identifying risk factors
associated with the disease. Women can be protected from
sexually transmitted diseases (STDs) with vaccination
against human papillomavirus (HPV) before the age of
15, as is recommended by the World Health Organisation.
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